Integration « Lesson study » in Vietnam Education: challenges for success

Nguyen Chi Thanh, PhD
Associate Professor
Faculty of Teacher Education
Vietnam National University, Hanoi

Presentation Outline

- Introduction
- Some features about Secondary Vietnam
 Education focusing on teacher training contents
 and textbook contents
- Challenges for implementing « Lesson study » in Vietnam
- Some suggestions
- Conclusion

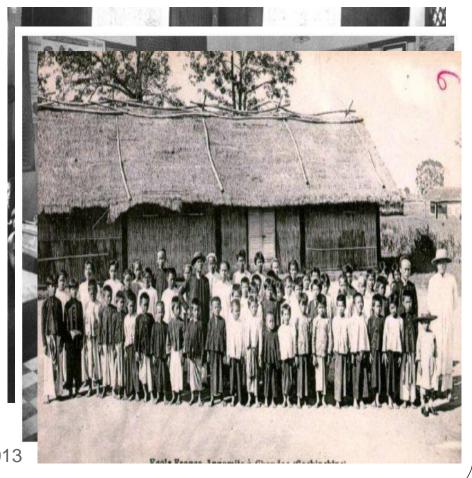
Introduction to Vietnam

APEC Khonkaen International Symposium 2013

Naturel Disaters in Vietnam

Introduction to Vietnam Education

- First education reform: 1950
- Second education reform: 1956
- Third education reform: 1980


Three projects are related to political and ideological raisons accordingly to the historic and important victories of the country (1945, 1954 and 1975).

Project of the 4th education reform: going on

Introduction to Vietnam Education

Data on school and enrolment (MOET, 1998)

Period	Primary school education		Lower secondary school	
	Schools	Students	Schools	Students
1942	737	62,300	65	16,700
1991	7124	8,856,986	3129	2,678,350
1994	10,137	9,040,955	4616	3,101,483
1998	12,058	8,865,305	6321	4,860,709

Introduction to Vietnam Education

In the year of 2012:

- 215 colleges (3 years of training) with 756 292 students
- 204 universities (4 to 5 years of training) with 1 448 021 students
- 28803 primary and secondary schools with 14782561 students

Teacher training: contents

• The content of training can be composed of three groups of subjects.

Group I: consists of shared subjects for all student-teachers such as psychology, philosophy, civic education, pedagogy, information science;

Group II: consists of subjects directly related to what must be taught in school by would-be teachers;

Group III: consists of professional theory subjects and subject didactic.

Teacher training contents (secondary school)

- Similaire contents on « Methodology of teaching and learning mathematics » :
 - Generalities
 - Typical situations on teaching and learning mathematics
 - How to teach some specific contents: number systems, equation and inequation, functions, derivative and integral, geometry on space, vector and coordinate, mathematic applications; set and logic
 - How to use of new ICT in math education

Teacher training content

Content in Methodology for high school mathematic teacher in Vietnam

Methodology of teaching and learning mathematic as a subject

- Objects and goals
- 2. Scientific characteristic
- 3. Relative sciences
- 4. Method of study

Questions and exercises

Orientation of teaching mathematic and learning mathematic processes

- 1. General objectives of subject "Mathematics"
- Educational principles using on the subject "Mathematics"
- Teaching and learning principles applied on the subject "Mathematics"

Questions and exercises

Content of the subject Mathematics

- Educational content of Mathematics
- Content of Mathematics
- Curriculum of Mathematics at high secondary school
 - A. Session "Natural science"
 - B. Session "Social and human sciences"
 - C. Session "Elementary"
- 4 Essential ideas
- 5 Content of Mathematics and student activities

Questions and exercises

Methodology of teaching and learning mathematics

- Notion on methodology of teaching and learning
- Generality about different methodologies of teaching and learning
- Traditional methodologies applied on process of teaching and learning Mathematics
- 4. Need and orientation to renovate teaching and learning methodology
- Essential components of teaching and learning methodology
- Functionalities guiding teaching and learning process

Questions and exercises

Nontraditional tendencies on teaching and learning

- Teaching and learning based on problem solving
- Sketches about the theory of situation
- 3. Teaching and learning by programming
- 4. Teaching and learning by division
- To develop and to use teaching and learning technologies

Questions and exercises

Assessment of student learning process

- Generality of assessment
- 2. Elementary notions on assessment
- 3. Different kinds on assessment process
- 4. Techniques of an assessment process
- QCM

Questions and exercises

Typical situations on teaching and learning Mathematics

- 1. Teaching and learning a mathematic notion
- Teaching and learning a mathematic theorem
- Teaching and learning a rule, a method
- Teaching and learning a resolution of a mathematic problem Questions and exercises

Teaching and learning means in Mathematics

- Generality ofteaching and learning means
- 2. Using teaching and learning means
- 3. Using IT as a teaching and learning mean

Questions and exercises

Teaching and learning planning

- School year planning
- Lesson planning

Questions and exercises

No content about:

- Problem solving
- Maths competencies
- Modeling problem

Presentation Outline

- Introduction
- Some features about Secondary Vietnam Education focusing on teacher training content and textbook contents
- Challenges for implementing « Lesson study » in Vietnam
- Some suggestions
- Conclusion

Example: Mathematic text books, grade 10

- Real life problem are focused only on some topics
- Algebra: Topics of solving equation and inequation
- Geometry: Topics of "solving" triangle

Few examples

Bài the cây the Để để giữa có the han t

40 2 Trab bhoảng cách từ một địa điểm trên bờ sông đến một gốc

- 11. Muốn đo chiều cao của Tháp Chàm Por Klong Garai ở Ninh Thuận (h.2.23), người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế (h.2.24). Chân của giác kế có chiều cao h = 1,3 m. Gọi D là đỉnh tháp và hai điểm A_1, B_1 cùng thẳng
 - hà9. Một phân xưởng được giao sản xuất 360 sản phẩm trong một số ngày nhất định. Vì phân xưởng tăng năng suất, mỗi ngày làm thêm được 9 sản phẩm so với định mức, nên trước khi hết hạn một ngày thì phân xưởng đã làm vượt số sản phẩm được giao là 5%. Hỏi nếu vẫn tiếp tục làm việc với năng suất đó thì khi đến hạn phân xưởng làm được tất cả bao nhiều sản phẩm?
 - Giải các phương trình sau bằng máy tính bỏ túi

a)
$$5x^2 - 3x - 7 = 0$$
;

b)
$$3x^2 + 4x + 1 = 0$$
;

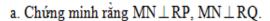
c)
$$0.2x^2 + 1.2x - 1 = 0$$
;

d)
$$\sqrt{2}x^2 + 5x + \sqrt{8} = 0$$
.

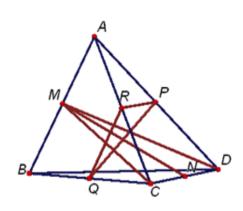
Giải các phương trình

a)
$$|4x - 9| = 3 - 2x$$
;

b)
$$|2x + 1| = |3x + 5|$$
.


- 12. Tìm hai cạnh của một mảnh vườn hình chữ nhật trong hai trường hợp
 - a) Chu vi là 94,4 m và diện tích là 494,55 m².
 - b) Hiệu của hai cạnh là 12,1 m và diện tích là 1089 m2.
- 3. Hai người quét sân. Cả hai người cùng quét sân hết 1 giờ 20 phút, trong khi nếu chỉ quét một mình thì người thứ nhất quét hết nhiều hơn 2 giờ so với người thứ hai. Hỏi mỗi người quét sân một mình thì hết mấy giờ?

Small number of real life problems


- Algebra: $9/167 \approx 5,4\%$
- Geometry: $3/118 \approx 2,5\%$
- A pre-defined model to solve these problems
- Algebra: steps to solve a practice problem by setting up an equation
 - "We pose as unknown what the problem ask us to find out"
- Geometry: Utilisation of sin and cosine theorems on a triangle

Calculation methods used in the demonstration

Ví dụ (tr. 57- SGK 2000). Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N, P, Q, R lần lượt là trung điểm của AB, CD, AD, BC và AC.

b. Chứng minh rằng AB \(\triangle CD.

Ta có MC = MD =
$$\frac{a\sqrt{3}}{2}$$
 nên Δ MCD cân, từ đó MN \perp CD.

Ta 1ại có RP // CD nên MN⊥RP. Tương tự MN ⊥RQ.

Tương tự như câu trên ta cũng có $QP \perp AD$.

Trong tam giác vuông QDP ta có
$$QP^2 = QD^2 - DP^2 = \left(\frac{a\sqrt{3}}{2}\right)^2 - \left(\frac{a}{2}\right)^2$$
.

Ta có
$$RQ^2 + RP^2 = \left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2 = \frac{a^2}{2} = QP^2$$
, tức là $RQ \perp RP$.

Let's given a regular tetrahedron of side a. M, N, P, Q, R are respectively the midpoint of segments [AB], [CD], [AD], [BC] et [AC].

• Prove that $(MN) \perp$ $(RP), (MN) \perp (RQ)$ and $(AB) \perp (CD)$

Entrance examination into university 2008

BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỂ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2008 Môn thị: TOẦN, khối A

ĐỀ CHÍNH THỰC

Thời gian làm bài 180 phút, không kế thời gian phát để

PHẨN CHUNG CHO TẤT CẢ THÍ SINH Câu I (2 điểm)

Cho hàm số $y = \frac{mx^2 + (3m^2 - 2)x - 2}{x + 3m}$ (1), với m là tham số thực.

- Khảo sát sự biến thiên và vẽ đổ thị của hàm số (1) khi m=1.
- Tim các giá trị của m để góc giữa hai đường tiệm cận của đổ thị hàm số (1) bằng 45°.

Câu II (2 điểm)

1. Giải phương trình
$$\frac{1}{\sin x} + \frac{1}{\sin \left(x - \frac{3\pi}{2}\right)} = 4\sin \left(\frac{7\pi}{4} - x\right)$$
.

$$2. \text{ Giải hệ phương trình } \begin{cases} x^2+y+x^3y+xy^2+xy=-\frac{5}{4} \\ \\ x^4+y^2+xy(1+2x)=-\frac{5}{4} \end{cases} \quad \big(x,y\in\mathbb{R}\big).$$

Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;5;3) và đường thẳng

$$d: \frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{2}.$$

- Tim tọa độ hình chiếu vuông góc của điểm A trên đường thắng d.
- Viết phương trình mặt phẳng (α) chứa d sao cho khoảng cách từ A đến (α) lớn nhất.
 Câu IV (2 điểm)
 - 1. Tính tích phân $I = \int_{0}^{\frac{\pi}{6}} \frac{tg^4x}{\cos 2x} dx$.
 - Tìm các giá trị của tham số m để phương trình sau có đúng hai nghiệm thực phân biệt : ^{√2x} + √2x + 2√6-x + 2√6-x = m (m∈ R).

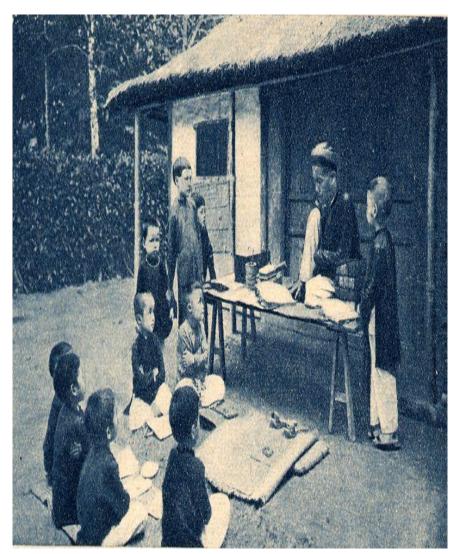
PHẨN RIÊNG — Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b — Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm)

- Trong mặt phẳng với hệ tọa độ Oxy, hãy viết phương trình chính tắc của elíp (E) biết rằng
 (E) có tâm sai bằng ^{√5}/₃ và hình chữ nhật cơ sở của (E) có chu vi bằng 20.
- 2. Cho khai triển $(1+2x)^n = a_0 + a_1x + ... + a_nx^n$, trong đó $n \in \mathbb{N}^*$ và các hệ số $a_0, a_1, ..., a_n$ thỏa mãn hệ thức $a_0 + \frac{a_1}{2} + ... + \frac{a_n}{2^n} = 4096$. Tim số lớn nhất trong các số $a_0, a_1, ..., a_n$.

Câu V.b. Theo chương trình phân ban (2 điểm)

- 1. Giải phương trình $\log_{2x-1}(2x^2 + x 1) + \log_{x+1}(2x 1)^2 = 4$.
- 2. Cho lăng tru ABC.A'B'C' có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = a√3 và hình chiếu vuông góc của đình A' trên mặt phảng (ABC) là trung điểm của cạnh BC. Tính theo a thể tích khối chóp A'.ABC và tính cosin của góc giữa hai APEC thông không học ngài bhái Symposium 2013

Secondary mathematics contents in Vietnam

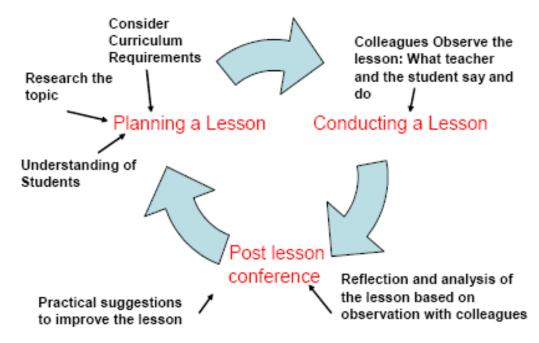

- Focus on attention to logical thinking, proof
- Curricula are very much academically and classically biased
- Focus too much on backward examination systems
- Introduct of few « real life problems »
- Do not pay attention to creativity, practicality;

Presentation Outline

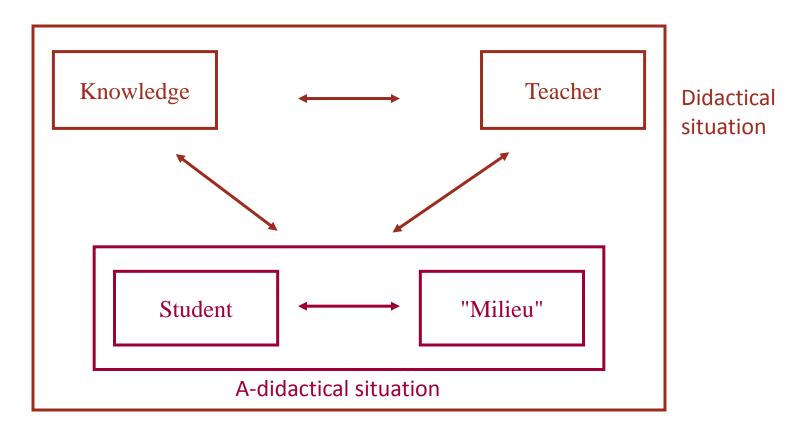
- Introduction
- Some features about Secondary Vietnam
 Education focusing on teacher training content
 and textbook contents
- Challenges for implementing « Lesson study » in Vietnam
- Some suggestions
- Conclusion

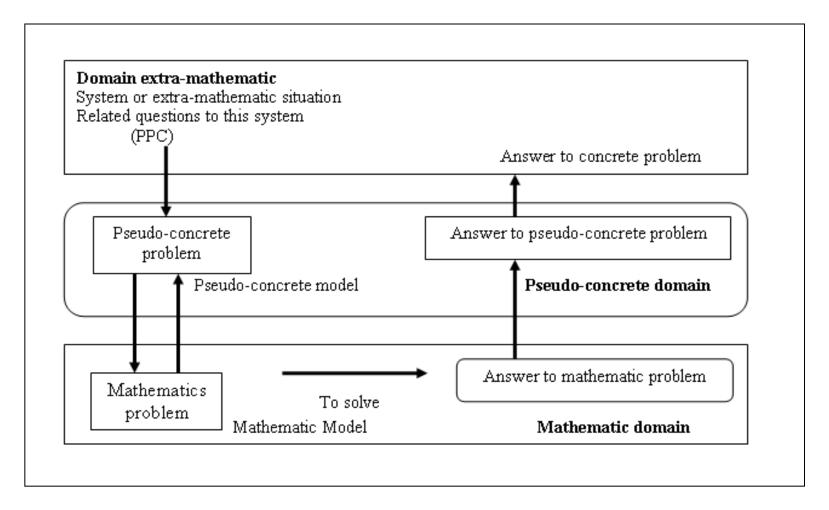
Challenges when implementing LS in Vietnam

- Perspectives when integrating
 « Lesson study » in Vietnam Education
 panorama
- + Excellent opportunity for secondary mathematic education innovation in term both of teaching method and knowlegde content
- + Excellent opportunity for teacher professional development
- But some challenges
- + Examination oriented curricula
- + Too theorical oriented teacher content
- + Economic condition for teachers
- + Vietnam culture: west culture


Presentation Outline

- Introduction
- Some features about Secondary Vietnam
 Education focusing on teacher training content
 and textbook contents
- Challenges for implementing « Lesson study » in Vietnam
- Some suggestions
- Conclusion


Integration « Lesson study circle » into teacher professional development


Process of Lesson Study Plan, Do, See Cyclical Process

Integration of theorical background oriented didactical situation theory

Integration of theorical background oriented modeling and problem solving

Conclusion

- We should ask students to do mathematics with practice contents such as solving problems by setting up an equation, optimization problems, measurement problems by using trigonometric functions
- Although mathematics is a deductive science, a major part of mathematic knowledge emerges from practice questions in which mathematics is a tool or a means in solving these problems
- Solving problems is the main activity in learning mathematics
- Teaching ''to solve problems through solving problems" is the main activity in teaching mathematics

Conclusion

- Integration « Lesson study » approach into Teacher training contents
- Integration « Problem solving » relating real life problem (in particular those related to naturel disater phenomena) in both textbooks and also in entrance examination
- Giving support (both in term of institution condition and financial condition) to teachers
- Sensitising educational leaders about utilities of lesson study as important principle of teacher professional development in particular and of educational innovation process in general.